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Abstract. We review time-domain formulations of radiation boundary condi-
tions for Maxwell’s equations, focusing on methods which can deliver arbitrary
accuracy at acceptable computational cost. Examples include fast evaluations
of nonlocal conditions on symmetric and general boundaries, methods based on
identfying and evaluating equivalent sources, and local approximations such
as the perfectly matched layer and sequences of local boundary conditions.
Complexity estimates are derived to assess work and storage requirements as
a function of wavelength and simulation time.

1. Introduction

As the radiation of energy to the far field is an important feature of most prob-
lems in computational electromagnetics, an accurate and efficient truncation of the
domain is a practical necessity for computations. In recent years there have been
rapid developments in this field. In this review we will concentrate on strategies
which can provide arbitrary accuracy. These include a variety of exact boundary
condition formulations, which are all nonlocal in space and time, in addition to con-
vergent local approximations such as the perfectly matched layer (PML). Besides
describing the basic mathematical and algorithmic content of the various methods,
we will, when possible, estimate their computational complexity as a function of the
harmonic content of the field and the simulation time. Our goal is not to advocate
one of the methods discussed over another. We will see that they are all capable
of providing excellent accuracy at acceptable cost in many settings, and that an
optimal choice will depend both on the details of the problem as well as on the time
to be invested on code development.

We will assume that in the far field, that is beyond the computational domain Ω,
we have a homogeneous, isotropic, dielectric material. In cgs units the source–free
Maxwell equations then are:

∂E

∂t
− c∇×B =0,(1.1)

∂B

∂t
+ c∇×E =0,(1.2)

1991 Mathematics Subject Classification. 65M99,78M99.
Supported in part by ARO Grant DAAD19-03-1-0146 and NSF Grant DMS-0610067. The

second author was also supported by NSF Grant DMS-0554377. Any conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily reflect the views
of ARO or NSF.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Radiation Boundary Conditions for Maxwell’s Equations: A Review of
Accurate Time-Domain Formulations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Brown University,Division of Applied Mathematics,182 George 
Street,Providence,RI,02912 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
We review time-domain formulations of radiation boundary conditions for Maxwell’s equations, focusing
on methods which can deliver arbitrary accuracy at acceptable computational cost. Examples include fast
evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identfying and
evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences
of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as
a function of wavelength and simulation time. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

33 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2 THOMAS HAGSTROM AND STEPHEN LAU

subject to the constraints

(1.3) ∇ ·E = 0 = ∇ · B.

The constraints (1.3) are clearly preserved under the time evolution governed by
(1.1)–(1.2).

Our problem is to specify radiation boundary conditions at an artificial boundary
Γ ⊂ ∂Ω so that the solution computed in Ω can be made arbitrarily close to the
restriction to Ω of the solution of the original problem on the unbounded domain.
We will organize the discussion around four general classes of methods: fast methods
based on separation of variables on symmetric boundaries, methods for general
boundaries beased on the retarded potential, methods based on equivalent source
representations, and, finally, convergent local approximations. We note that there
have been parallel developments for other applications and refer the reader to [35,
36] for more comprehensive if slightly older reviews.

2. Boundaries with symmetry

For plane, spherical, and cylindrical boundaries, this section formulates exact
nonreflecting boundary conditions for the homogeneous Maxwell equations. An
earlier review article [35] described these boundary conditions from a more general
perspective. In contrast, our presentation here considers only the Maxwell system
(1.1)–(1.2) and derives the relevant boundary conditions and effective numerical
approximations from the ground up.

2.1. Planar boundary. Let x1 = x = 0 specify the planar boundary of the “com-
putational domain” x < 0. On the system (1.1)–(1.2) we perform both a Laplace
transform (denoted by a hat) in time and a Fourier transform (denoted by a bar) in
the tangential variables (x2, x3) = (y, z), thereby obtaining a differential–algebraic
system. With (k2, k3) representing the Fourier variables dual to (y, z), the system’s
algebraic sector is

(2.4) s̃ ˆ̄E1 = ik2
ˆ̄B3 − ik3

ˆ̄B2, s̃ ˆ̄B1 = −ik2
ˆ̄E3 + ik3

ˆ̄E2,

where s̃ = s/c. Using these algebraic equations, we may then express the remaining
differential sector solely in terms of the tangential variables as follows:

(2.5)
∂

∂x











ˆ̄E2

ˆ̄E3

ˆ̄B2

ˆ̄B3











=













0 0 k2k3
s̃ − (s̃2+k2

2)
s̃

0 0
(s̃2+k2

3)
s̃ −k2k3

s̃

−k2k3
s̃

(s̃2+k2
2)

s̃ 0 0

− (s̃2+k2
3)

s̃
k2k3
s̃ 0 0























ˆ̄E2

ˆ̄E3

ˆ̄B2

ˆ̄B3











.

The eigenvalues of the matrix are

(2.6) λ± = ±
√

s̃2 + k2
2 + k2

3 = ±
√

s̃2 + |k|2,

with each one doubly degenerate. In (2.6) we define the branch to ensure that
λ+ has positive real part for Res̃ > 0, and λ+ ∼ s̃ as s̃ → ∞. As the branch
cut we choose a curve in the left–half s̃–plane running from i|k| to −i|k|. Our
radiation conditions demand that solutions to (2.5) remain bounded as x → ∞.
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Such solutions are then of the form
(2.7)

e−x
√
s̃2+|k|2















a(s̃, k2, k3)









s̃2 + k2
2

k2k3

0

s̃
√

s̃2 + |k|2









+ b(s̃, k2, k3)









−k2k3

−s̃2 − k2
3

s̃
√

s̃2 + |k|2
0























.

Straightforward calculations show that for this subspace the solution components
obey the relationships

[

√

s̃2 + |k|2 + s̃+
k2
3

s̃

]

ˆ̄E2 −
k2k3

s̃
ˆ̄E3 +

k2k3

s̃
ˆ̄B2 −

[

√

s̃2 + |k|2 + s̃+
k2
2

s̃

]

ˆ̄B3 = 0,

(2.8)

−k2k3

s̃
ˆ̄E2 +

[

√

s̃2 + |k|2 + s̃+
k2
2

s̃

]

ˆ̄E3 +

[

√

s̃2 + |k|2 + s̃+
k2
3

s̃

]

ˆ̄B2 −
k2k3

s̃
ˆ̄B3 = 0.

(2.9)

The earlier review article [35] discusses the origin of these relationships in terms of
the left eigenvectors of the matrix appearing in (2.5).

To produce physical–space time–domain radiation conditions from (2.8)–(2.9),
we must carry out the necessary inverse transformations. We first introduce the
kernel [35, 3]

(2.10) K(t) = t−1J1(t), K̂(s) =
√

s2 + 1 − s,

where of course K̂(s) decays in s. In (2.8)–(2.9) we set

(2.11)
√

s̃2 + |k|2 + s̃ = |k|K̂
(

|k|−1s̃
)

+ 2s̃,

rearrange terms, and make substitutions with (2.4), in order to reach a set of
equations on which the inverse transformations are easily carried out. We then find

2

c

∂

∂t
(E2 − B3) + R(E2 −B3) +

∂E1

∂y
− ∂B1

∂z
= 0,(2.12)

2

c

∂

∂t
(E3 + B2) + R(E3 +B2) +

∂E1

∂z
+
∂B1

∂y
= 0,(2.13)

where the nonlocal operation (Rw)(0, y, z, t) is defined through

(2.14) F
(

Rw)(0, k2, k3, t) =

∫ t

0

J1

(

c|k|τ
)

c|k|τ
[

c|k|2w̄(0, k2, k3, t− τ)
]

dτ.

Here F denotes Fourier transform in the tangential variables (y, z), and succinctly

(2.15) Rw = F−1
(

c|k|2K(c|k|t) ∗ (Fw)
)

.

We note that analogous expressions can be derived in waveguides, which is the
most practical application of the planar boundary formulas. We consider only the
simplest possible case. In particular, suppose that for x > 0 the waveguide has
constant rectangular cross-section, Θ = [0, Ly] × [0, Lz]. Suppose further that the
walls are perfectly conducting. Then we may replace the Fourier transfroms in the
expressions above by Fourier series. (Note that for more complicated cross-sections
the relevant eigenfunction expansions couple Cartesian components in a nontrivial
way.) Noting the boundary conditions and divergence constraint we conclude that

E2 and B3 should be expanded in terms of cos
(

k2πy
Ly

)

· sin
(

k3πz
Lz

)

≡ CSk2,k3 while
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E3 and B2 are expressed in terms of sin
(

k2πy
Ly

)

· cos
(

k3πz
Lz

)

≡ SCk2,k3 . (See, e.g,

[61, Ch. 9].) We must now only replace F by the series transform FCS in equation

(2.12) and FSC in equation (2.13), noting that now |k|2 = π2
(

k2
2

L2
y

+
k2
3

L2
z

)

.

Refs. [3, 50] present efficient strategies for numerically implementing the con-
volution (2.15), and these methods will be discussed below. Such approximations
obviate the need to carry out the exact inverse Fourier transform in (2.15). Nev-
ertheless, as an interesting exercise we here perform this inverse transformation in
order to achieve the exact physical–space time–domain boundary conditions. First,
with y = (y, z), k = (k2, k3), u = (u, v), and

(2.16) F (k2, k3) =
1

2π

∫

R2

e−iy·kf(y, z)dy, f(y, z) =
1

2π

∫

R2

eiy·kF (k2, k3)dk,

recall that by the Fourier convolution theorem

(2.17) F−1
[

F (k2, k3)G(k2, k3)
]

(y, z) =
1

2π

∫

R2

f(y − u, z − v)g(u, v)du.

In order to apply the convolution theorem (2.17), we first assemble several results
from Watson’s monograph [74] in order to compute the inverse Fourier transform

(2.18)
1

2π

∫

R2

eiy·k
J1(c|k|t)
c|k|t dk =

H(t− ρ/c)

c2t2
,

where ρ =
√

y2 + z2 and H(ξ) is the Heaviside step function such that H(ξ) = 0
for ξ < 0, H(0) = 1

2 , H(ξ) = 1 for ξ > 0. With these results, we find that

(2.19) (Rw)(0, y, z, t) = − 1

2π

∫ t

0

1

c(t− τ)2

∫

|y−u|≤c(t−τ)

∆uw(0, u, v, τ)dudτ,

with ∆u denoting the Laplacian in the u–v plane. The divergence theorem then
gives

(Rw)(0, y, z, t) =

− 1

2π

∫ t

0

1

c(t− τ)

∂

∂t

∫ 2π

0

w(0, y + c(t− τ) cos θ, z + c(t− τ) sin θ, τ)dθdτ.(2.20)

Notice that the integration is over the intersection of the artificial boundary x = 0
and the past lightcone belonging to the spacetime point (0, y, z, t).

2.2. Spherical boundary.

2.2.1. Vector spherical harmonics. We consider both pure–spin and pure–orbital

vector spherical harmonics (see [69] for the origins of this terminology). As given
in [35, 53, 56, 55], the unnormalized pure–spin harmonics are the set

Y`m =Y`mer,

Ψ`m =
∂Y`m
∂θ

eθ +
1

sin θ

∂Y`m
∂φ

eφ,(2.21)

Φ`m = − 1

sin θ

∂Y`m
∂φ

eθ +
∂Y`m
∂θ

eφ,
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where er, eθ, and eφ are the standard unit basis vectors in the spherical polar
coordinate system and

(2.22) Y`m(θ, φ) =

√

2`+ 1

4π

(`−m)!

(`+m)!
eimφPm` (cos θ),

is one of the standard spherical harmonics, orthogonal on the unit sphere. (Here
Pm` is the associated Legendre function defined in [1], Ch. 8.) When paired with
r–dependent expansion coefficients, these harmonics are easily seen to form a closed
system under the standard vector operations (div, grad, curl) involving the gradient
operator ∇ [55]. In terms of the pure–spin harmonics, we also define a set of
normalized pure–orbital vector harmonics,

W`m =Y`−1
`m =

√

`+ 1

2`+ 1

[

1
√

`(`+ 1)
Ψ`m

]

+

√

`

2`+ 1
Y`m,

X`m =Y`
`m = −i

[

1
√

`(`+ 1)
Φ`m

]

,(2.23)

V`m =Y`+1
`m =

√

`

2`+ 1

[

1
√

`(`+ 1)
Ψ`m

]

−
√

`+ 1

2`+ 1
Y`m.

The Y`′

`m are Thorne’s Y`′,`m [69], and the V`m, X`m, W`m notation is due to
Hill [47]. When paired with r–dependent expansion coefficients, the pure–orbital
harmonics also form a closed system under the standard vector operations involving
the gradient operator ∇, and a compendium of formulas is given by Hill [47]. Apart

from the factors of 1/
√

`(`+ 1), which serve to normalize the pure–spin harmonics
(2.21), the matrix associated with the transformation (2.23) is unitary.

The orbital harmonics (2.23) also arise in the quantum theory of angular mo-
menta [11]. Indeed, in terms of the complexified basis t0 = ez, t±1 = ∓(ex ±
iey)/

√
2, they are

(2.24) Y`′

`m =
`′
∑

m′=−`′

1
∑

m′′=−1

(`′1m′m′′|`′1`m)Y`′m′tm′′ ,

where the (`′1m′m′′|`′1`m) are Clebsch–Gordan coefficients [1, 11]. For fixed `

the Y`′

`m transform under an order–` representation of the rotation group SO(3).
The expansion above expresses this representation as a coupling between the scalar
harmonics Y`′,m (an order–`′ representation, where `′ = `−1, `, `+1) and the basis
tm (an order–1 representation). Starting from (2.23) and using identities for the
scalar harmonics (collected, for example, in [48]), one may also directly calculate
the following explicit expressions:

Y`−1
`m =

√

(`+m)(`+m− 1)

2`(2`− 1)
Y`−1,m−1t1

+

√

(`−m)(`+m)

`(2`− 1)
Y`−1,mt0

+

√

(`−m)(`−m− 1)

2`(2`− 1)
Y`−1,m+1t−1,
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Y`
`m = −

√

(`+m)(`−m+ 1)

2`(`+ 1)
Y`,m−1t1(2.25)

+m

√

1

`(`+ 1)
Y`,mt0

+

√

(`−m)(`+m+ 1)

2`(`+ 1)
Y`,m+1t−1,

Y`+1
`m =

√

(`−m+ 1)(`−m+ 2)

(2`+ 2)(2`+ 3)
Y`+1,m−1t1

−
√

(`+m+ 1)(`−m+ 1)

(`+ 1)(2`+ 3)
Y`+1,mt0

+

√

(`+m+ 1)(`+m+ 2)

(2`+ 2)(2`+ 3)
Y`+1,m+1t−1.

The factors involving square roots are the nonzero Clebsch–Gordan coefficients in
the expansion (2.24). Unlike the pure–spin harmonics (2.21), the Y`′

`m are eigen-
functions of the spherical Laplacian with eigenvalue −`′(`′ + 1).

2.2.2. Exact radiation boundary conditions. Using the pure–spin harmonics, Ref. [35]
has formulated exact radiation boundary conditions for the electromagnetic field in
the presence of a spherical boundary. Here we will provide an equivalent description
in terms of the pure–orbital harmonics. Nevertheless, since they are tailored to the
transverse character of the radiation field, we at first work with the pure–spin har-
monics, only converting to the pure–orbital harmonics once our calculations have
been completed.

To start, we perform a Laplace transform on the system (1.1)–(1.2), subsequently

expanding the transformed variables Ê and B̂ in pure–spin harmonics. The Ê
expansion, for example, is

(2.26) Ê =

∞
∑

`=1

∑̀

m=−`

[

Êr`mY`m + Ê
(1)
`mΨ`m + Ê

(2)
`mΦ`m

]

.

This process leads to a differential–algebraic system of equations, where the alge-
braic sector is

(2.27) s̃Êr`m = −`(`+ 1)

r
B̂

(2)
`m, s̃B̂r`m =

`(`+ 1)

r
Ê

(2)
`m .

These equations may be used to eliminate the radial–harmonic coefficients, Êr`m
and B̂r`m, and such an elimination yields the following first–order system for the
remaining coefficients:
(2.28)

(

∂

∂r
+

1

r

)











Ê
(1)
`m

Ê
(2)
`m

B̂
(1)
`m

B̂
(2)
`m











= s̃









0 0 0 −1 − `(`+1)
s̃2r2

0 0 1 0

0 1 + `(`+1)
s̃2r2 0 0

−1 0 0 0



















Ê
(1)
`m

Ê
(2)
`m

B̂
(1)
`m

B̂
(2)
`m











.
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The solutions

(2.29) a`m(s̃)









k′`(s̃r) + k`(s̃r)
s̃r

0
0

−k`(s̃r)









+ b`m(s̃)









0
k`(s̃r)

k′`(s̃r) + k`(s̃r)
s̃r

0









remain finite as r → ∞ for Re(s̃) > 0. Here k`(z) is a modified spherical Bessel

function expressed as k`(z) =
√

π/(2z)K`+1/2(z) in terms of the standard modi-
fied cylindrical Bessel function Kν(z) known as the MacDonald function [74]. As
defined,

(2.30) k`(z) ∼ π(2z)−1e−z as z → ∞,

but some authors fix the definition of k`(z) so that k`(z) ∼ z−1e−z. In any case, the
choice of the overall of overall constant does not affect our argument. From now on
we assume that the multipole components have the stated form, so, for example,

B̂
(2)
`m = −a`m(s̃)k`(s̃r). Further calculations then show that

(2.31) s̃
(

Ê
(2)
`m + B̂

(1)
`m

)

+
1

r
M̂`(s̃r)Ê

(2)
`m = 0, s̃

(

Ê
(1)
`m − B̂

(2)
`m

)

− 1

r
M̂`(s̃r)B̂

(2)
`m = 0.

Here the frequency-domain kernel is

(2.32) M̂`(z) = −
[

1 + z + z
k′`(z)

k`(z)

]

= −
[

1

2
+ z + z

K ′
`+1/2(z)

K`+1/2(z)

]

.

In fact M̂`(z) = O(1/z), so that overall r−1M̂`(s̃r) is O(1/r2) in the radial coordi-
nate.

By the Laplace convolution theorem, the corresponding time–domain boundary
conditions are then (with r = R taken as the boundary location)

1

c

∂

∂t

(

E
(2)
`m +B

(1)
`m

)

+
1

R

∫ t

0

M`(cτ/R)E
(2)
`m(R, t− τ)dτ = 0,(2.33)

1

c

∂

∂t

(

E
(1)
`m −B

(2)
`m

)

− 1

R

∫ t

0

M`(cτ/R)B
(2)
`m(R, t− τ)dτ = 0,(2.34)

where the time–domain kernel is

(2.35) M`(ct/R) = −
∑̀

k=1

(z`,k/R) exp(z`,kct/R)

in terms of the ` roots z`,k of K`+1/2(z) which all lie in the left–half plane z–plane.
As will be discussed in subsequent sections, the fact that the kernels are expo-

nential functions of t implies that the temporal convolution can be localized. That
is, one can avoid the storage of the time history evident in (2.33)-(2.34). This fact
was independently exploited by Sofronov [63, 64] and Grote and Keller [28, 29, 30]
to derive and implement accurate temporally local conditions. (See also [31] for
applications to multiple scattering.) In fact, in [38] it is shown that purely lo-
cal conditions can be developed which are exact for solutions described by finitely
many spherical harmonics. In particular, setting w0 = 2u, wP+1 = 0 and solving
the following coupled sequence of equations on the sphere:

(2.36)
1

c

∂wj
∂t

+
j

R
wj =

1

4R2
(∆S2 + j(j − 1))wj−1 + wj+1, j = 1, . . . , P,
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it is shown that:

(2.37) w1 +
1

R

P
∑

`=0

∑̀

m=−`

Y`m (M` ∗ u`m) = 0,

if we assume u`m = 0 for ` > P . This local exact condition has been successfully
implemented by Grote [27].

These formulations become expensive as the harmonic index, `, increases as
(2.35) requires ` exponentials. However, as described in [2], for large ` one may use
compressed kernels and fewer exponential terms while retaining high accuracy. We
will describe this development below.

Introducing B̄ = er×B = −Bφeθ+Bθeφ, so that B
(1)
`m = B̄

(2)
`m and −B(2)

`m = B̄
(1)
`m,

we then write (2.33)–(2.34) as follows:

1

c

∂

∂t

(

E
(2)
`m + B̄

(2)
`m

)

+
1

R

(

M` ∗E(2)
`m

)

= 0(2.38)

1

c

∂

∂t

(

E
(1)
`m + B̄

(1)
`m

)

+
1

R

(

M` ∗ B̄(1)
`m

)

= 0.(2.39)

Finally, summing these equations on the harmonics, we obtain

(2.40)
1

c

∂

∂t

(

ET + B̄
)

+
1

R

∞
∑

`=1

∑̀

m=−`

[

Ψ`m

(

M` ∗ B̄(1)
`m

)

+ Φ`m

(

M` ∗E(2)
`m

)

]

,

where the superscript T denotes “transverse”, that is ET = E − E(E · er). Note
that ET +B has components (0, Eθ −Bφ, Eθ +Bφ).

We now rewrite (2.40) in terms of the pure–orbital harmonics, thereby achieving
an expression which may be implemented using the scalar–harmonic transform.
Since B̄ = B̄T , it follows from (2.23) that

(2.41) B̄
(`−1)
`m =

√

`

2`+ 1
(`+ 1)B̄

(1)
`m, B̄

(`+1)
`m =

√

`+ 1

2`+ 1
`B̄

(1)
`m.

Here the expansion coefficients are with respect the pure–orbital harmonics,

(2.42) B̄
(`′)
`m =

∫

S2

B̄ ·Y`′

`mdS,

where the overline on Y indicates complex conjugation and dS is the area measure
on the unit sphere S2. In terms of the pure–orbital harmonics, the boundary
condition (2.40) becomes

0 =
1

c

∂

∂t

(

ET + B̄
)

+

1

R

∞
∑

`=1

∑̀

m=−`

[

Y`−1
`m

(

M` ∗ B̄(`−1)
`m

)

+ Y`+1
`m

(

M` ∗ B̄(`+1)
`m

)

+ Y`
`m

(

M` ∗E(`)
`m

)

]

.

(2.43)

Taking advantage of the list (2.25), we may use the scalar–harmonic transform

to compute the coefficients B̄
(`′)
`m and E

(`′)
`m . This fact is significant for practical

implementations as we can use well-developed software for computing and inverting
the transform. (See, for example, the routines distributed with the NCAR spectral
transform shallow water model [57].)
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2.3. Cylindrical boundary. Our last example is a cylindrical boundary of infi-
nite extent, defined in terms of the standard cylindrical coordinate system (r, θ, z)
as r = R. We expand the vector field E in terms of the standard orthonormal
cylindrical basis {er, eθ, ez} as E = Erer + Eθeθ + Ezez, and similarly for B.
Next, we write down the Maxwell system (1.1)–(1.2) component–by–component,
subsequently performing on each field component a Laplace transform in t (with
dual variable s and denoted by a hat), continuous Fourier transform in z (with
dual variable k and denoted by a bar), and a Fourier series expansion in θ (with
dual index n and denoted by a superscript n). Like before, this process yields both
algebraic equations,

(2.44) s̃ ˆ̄Enr −
(

in

r
ˆ̄Bnz − ik ˆ̄Bnθ

)

= 0, s̃ ˆ̄Bnr +

(

in

r
ˆ̄Enz − ik ˆ̄Enθ

)

= 0,

as well as a system of ordinary differential equations,
(2.45)

∂

∂r











r ˆ̄Enθ
ˆ̄Enz
r ˆ̄Bnθ
ˆ̄Bnz











+











0 0 −kn
s̃r s̃r + n2

s̃r

0 0 − s̃
r − k2

s̃r
kn
s̃r

kn
s̃r −s̃r − n2

s̃r 0 0
s̃
r + k2

s̃r −kn
s̃r 0 0





















r ˆ̄Enθ
ˆ̄Enz
r ˆ̄Bnθ
ˆ̄Bnz











= 0.

The solutions which remain finite as r → ∞ have the form

(2.46)











r ˆ̄Enθ
ˆ̄Enz
r ˆ̄Bnθ
ˆ̄Bnz











= an(s̃, k)









kn
σ2Kn(rσ)
Kn(rσ)
s̃r
σ K

′
n(rσ)
0









+ bn(s̃, k)









− s̃r
σ K

′
n(rσ)

0
kn
σ2Kn(rσ)
Kn(rσ)









,

where σ =
√
s̃2 + k2, with the branch chosen as in plane boundary example. Notice

that σ− s̃ = kK̂(k−1s̃), where the kernel K̂(s), first appearing in (2.10), should not
be confused with the MacDonald function Kn(rσ). For the chosen subspace (2.46)
of solutions the components satisfy the relationships

s̃
( ˆ̄Enz + ˆ̄Bnθ

)

+
ˆ̄Enz
2r

+ ik ˆ̄Enr + kK̂(k−1s̃) ˆ̄Enz +
1

r
Ĉn
(

r
√

s̃2 + k2
) ˆ̄Enz = 0,(2.47)

s̃
( ˆ̄Bnz − ˆ̄Enθ

)

+
ˆ̄Bnz
2r

+ ik ˆ̄Bnr + kK̂(k−1s̃) ˆ̄Bnz +
1

r
Ĉn
(

r
√

s̃2 + k2
) ˆ̄Bnz = 0.(2.48)

To reach these equations we have made use of (2.44) and introduced

(2.49) Ĉn(z) = −
[

1

2
+ z + z

K ′
n(z)

Kn(z)

]

.

Since Ĉn(z) ∼ z−1 as z → ∞, the kernel Ĉn
(

r
√
s̃2 + k2

)

is the Laplace trans-
form of a function Gn(ct, r, k). We may now easily perform the requisite inverse
transformations on (2.47)–(2.48). Evaluated at the boundary r = R, the results
are

1

c

∂

∂t

(

Ez +Bθ
)

+
Ez
2R

+
∂Er
∂z

+ RzEz + QθzEz = 0,(2.50)

1

c

∂

∂t

(

Bz −Eθ
)

+
Bz
2R

+
∂Br
∂z

+ RzBz + QθzBz = 0.(2.51)
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Here, with Fz indicating Fourier transform in z and w = w(R, θ, z, t), we define

(2.52) Rzw = F−1
z

(

ck2K(ckt) ∗ (Fzw)
)

,

which is similar to formula (2.15). Moreover, with Fθz representing double Fourier
transformation in θ (series) and z (continuous), the remaining nonlocal operation
is

(2.53) Qθzw = F−1
θz

(

Gn(ct, R, k) ∗ Fθzw
)

.

Although we will not explicitly perform the inverse Laplace and Fourier transforms
in order to define the exact time–domain physical–space boundary conditions, we
note that efficient strategies exist for numerically implementing these nonlocal op-
erations [3].

2.4. Fast time-local evaluation of the kernels I: global exponential ap-

proximations. Clearly, a primary bottleneck in the direct evaluation of the exact
boundary conditions derived above is the evaluation of integral operators. To give
a rough count of the complexity, we suppose lengths are scaled by the dimensions of
the computational domain, and time is scaled so that c = 1. Then the integration
time, T , measures the number of times a wave could traverse the domain. If a
characteristic wavelength in these units is given by λ the complexity of a standard
solver would be:

(2.54) Work ∝ λ−4T, Storage ∝ λ−3.

A reasonable goal is that the cost of boundary treatment is no worse than these.
Specializing to the spherical boundary, the cost per time step associated with the
integrals is the sum of the cost of the spherical harmonic transform and the cost
of the temporal convolution. Noting that the number of harmonics required will
scale like λ−2, the use of standard software such as [57], which combines FFTs in
the azimuthal coordinate with direct transforms in θ, leads to a total cost of:

(2.55) WorkSHT ∝ λ−4T,

which is comparable to (and in practice less than) the work required by the volume
solver. For λ� 1 one could instead use one of the recently developed fast spherical
harmonic transforms (e.g. [52, 43, 65]). These reduce the complexity to:

(2.56) WorkSHT ∝ λ−3 ln (λ−1)T.

The work associated with the temporal convolution can also be kept manage-
able through the use of fast alogrithms. Precisely, Hairer et al [41] show that the
well-known FFT-based algorithms for computing convolutions can be adapted to
evolutional convolution integrals of our form. Using their algorithm we have:

(2.57) Workconv ∝ λ−3 ln2 (λ−1)T ln2 T.

However, the algorithm in [41] requires full storage of the boundary history:

(2.58) Storageconv ∝ λ−3T.

This is the dominant storage cost for T large, and is prohibitive for large applica-
tions.
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The key idea in developing fast, low-storage implementations of the exact bound-
ary conditions is the observation that convolution with exponential functions re-
quires no history storage. Precisely, if:

(2.59) φ(t) =

∫ t

0

αeβ(t−τ)u(τ)dτ,

then φ satisfies the differential equation:

(2.60)
dφ

dt
= βφ+ αu.

We can thus expect to compute φ using O(λ−1T ) work and O(1) storage, vastly
improving on the general algorithm of [41]. For the case of a spherical boundary,
we have already observed that the kernels are exactly equal to sums of exponentials
(2.35). This leads to an algorithm which is mathematically equivalent to the one
proposed by Sofronov [63, 64] and Grote-Keller [28, 29, 30]:

(2.61)

∫ t

0

M`(c(t− τ)/R)

(

E
(2)
`m(R, τ)

B
(2)
`m(R, τ)

)

dτ =
∑̀

k=1

Z`,k(t),

(2.62)
dZ`,k
dt

=
z`,kc

R
Z`,k −

z`,kc

R

(

E
(2)
`m(R, τ)

B
(2)
`m(R, τ)

)

, Z`,k(0) = 0.

Now the number of auxiliary functions Z`,k(t) which must be computed is propor-
tional to λ−3. Thus the cost of the local convolution algorithm is:

(2.63) Workconv ∝ λ−4T, Storageconv ∝ λ−3,

which is comparable to the work and storage required by the volume solver.
Further improvements in efficiency and generalizations to the planar and cylindri-

cal boundaries follow from the uniform approximation of the temporal convolution
kernels by a smaller number of exponentials. The analysis and practical construc-
tion of these approximations is carried out in [2, 3]. We will review their analysis
briefly. However, from the user’s perspective, one only needs a table of exponents
and amplitudes. These can be obtained at [34].

Let Cp(t) denote any of the convolution kernels derived above (see (2.15),(2.43),(2.52))
with p representing the spatial harmonic index. The approximation problem is to
find (αj,p, βj,p), j = 1, . . . , Np, such that:

(2.64) Rp(t) =

Np
∑

j=1

αj,pe
βj,pt,

satisfies for some (small) tolerance ε and (large) time T :

(2.65) ‖(Rp − Cp) ∗ f‖L2(0,T ) ≤ ε‖f‖L2(0,T ).

By Parseval’s relation we can translate this to an equivalent statement on the
rational approximation of the Laplace transform of the kernel:

(2.66) max
<(s)=T−1

|R̂p(s) − Ĉp(s)| ≤
ε

e
,
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where we note that:

(2.67) R̂p(s) =

Np
∑

j=1

αj,p
s− βj,p

.

The fundamental theoretical result of [2, 3] is that all the kernels admit expo-
nential approximations with:

(2.68) Np ≤ C ln
1

ε
· ln (pT ).

The proof is based on representations of Ĉp as sums/integrals of poles over ap-
propriate contours in the left half s-plane combined with a general approximation
result for functions so represented. Using these exponential approximations the
convolution algorithm now costs:

(2.69) Workconv ∝ λ−3T ln
1

ε
· ln
(

T

λ

)

, Storageconv ∝ λ−2 ln
1

ε
· ln
(

T

λ

)

.

Now the work and storage is negligible in comparison with the requirements of the
volume solver. Only the cost of the spatial transforms is formally comparable.

The practical numerical construction of the poles and amplitudes yields remark-
ably efficient exponential approximations. In Table 1 we list results for a tolerance
of ε = 10−6. (The poles and amplitudes themselves are available at [34].) Note that
we exploit the homogeneity of the plane kernel to compute k-independent poles:

(2.70) αj,k = |k|2αj , βj,k = |k|βj .
Also note that the zero mode for the cylinder kernel is particularly difficult to
approximate, but the highers modes are essentially the same as in the spherical
case.

Cylinder Sphere Plane
n Nn ` N` |k|T ≤ 104

0 26 31
1 9
2 6

3 − 6 5 0 − 5 `
7 − 8 6 6 − 8 6

9 − 12 7 9 − 12 7
13 − 19 8 13− 19 8
20 − 31 9 20− 31 9
32 − 51 10 32− 51 10
52 − 86 11 52− 86 11

87− 147 12 87 − 147 12
148− 227 13 148− 228 13
228− 401 14 229− 402 14
402− 728 15 403− 728 15

729− 1024 16 729− 1024 16
Table 1. Poles required for exponential approximations to the
nonreflecting boundary kernels with a tolerance of ε = 10−6.
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2.5. Fast time-local evaluation of the kernels II: piecewise exponential

approximations. More recently, alternative fast, low-storage algorithms for eval-
uating evolutional convolutions have been proposed by Schädle and coworkers
[50, 49, 60]. These are based on piecewise rather than global exponential approxi-
mations to the kernel. The advantages of using piecewise rather than global approx-
imations are that they are easier to construct and more generally applicable. The
disadvantages are that the very simple convolution algorithm embodied in (2.60)
must be replaced by an algorithm which is more complicated, and slightly more
memory and work are required.

Concerning generality, it is shown in [60] that the only essential requirement for
the applicability of the approach is that the Laplace transform of the convolution
kernel, C(t), be sectorial. That is, for some complex number s0 and angle φ < π

2 ,

Ĉ(s) is analytic for |arg(s− s0)| < π − φ. Moreover, for positive constants M and
ν:

(2.71) |Ĉ(s)| ≤M |s|−ν .
These requirements are satisfied by the kernelsCp(t) discussed above, but, of course,
by many other kernels appearing in diverse applications. The exponential approx-
imations themselves are defined on intervals of rapidly increasing length. Fixing a
base, B > 1, and a time step ∆t the kernel is approximated by a fixed number of
exponentials, P ∝ ln 1

ε , on each subinterval:

(2.72) C(t) ≈
P
∑

j=1

α
(k)
j eβ

(k)
j t, t ∈ [Bk−1∆t, (2Bk − 1)∆t] ≡ Ik.

(Notice the overlap.) The poles and amplitudes are directly computed from Ĉ(s)
by applying a P -point quadrature rule to the Laplace inversion integral along a
specially chosen contour; the so-called Talbot contour [66]. For fixed B one can
take P ∝ ln 1

ε for an error tolerance ε. Thus the least squares procedure of [2, 3]
is avoided, and the approximations can be computed on the fly; all the user needs
to know is the singularity structure of Ĉ which determines some parameters in the
contours.

The approximate convolution may be derived as follows. If the final simulation
time is T it is clear that the piecewise approximations to C will eventually be
needed on intervals Ik, k = 1, . . . , L where L is the smallest integer such that
(2BL − 1)∆t ≥ T . Clearly L ∝ ln (λ−1T ). We solve the differential equations
associated with (2.72) over intervals ((` − 1)Bk∆t, `Bk∆t), ` = 1, . . . , `F , where
(`F + 1)Bk∆t > T . Precisely, suppose

(2.73)
dyj,k,`
dt

= β
(k)
j yj,k,` + α

(k)
j u(t), yj,k,`

(

(`− 1)Bk∆t
)

= 0,

and set:

(2.74) zj,k,`,p = yj,k,`
(

((`− 1)Bk + pBk−1)∆t
)

, p = 1, . . . , B.

Note that the work involved in computing these numbers is propoprtional to PLλ−1T ∝
ln 1

ε · ln (λ−1T )λ−1T . Now consider the approximate evaluation of

(2.75)

∫ t

0

C(t− τ)u(τ)dτ.
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Obviously the local part of the integral can be approximated using local data and
so we concentrate on the integral up to t − ∆t. We partition it into subintervals
over which the various kernel approximations are valid. Precisely, we determine
t− ∆t = τ0 > τ1 > . . . > τM = 0 such that τk = (`k − 1)Bk∆t for some integer `k
and (t− τk−1, t− τk) ∈ Ik. (The construction of the partition involves an expansion
of the time step index in base B; see [49].) We then have:

∫ t−∆t

0

C(t− τ)u(τ)dτ =

M
∑

k=1

∫ τk−1

τk

C(t− τ)u(τ)dτ

≈
M
∑

k=1

P
∑

j=1

eβ
(k)
j (t−τk−1)zj,k,`k,pk

(2.76)

where (`k−1)B+pk = `k−1−1. Applying this algorithm to the nonlocal boundary
conditions described above and being careful about which values zj,k,`,p can be
discarded we find that the cost is:

(2.77) Workconv ∝ λ−3T ln
1

ε
· ln (λ−1T ), Storageconv ∝ λ−2 ln

1

ε
· ln (λ−1T ),

which is again negligible in comparison with the volume solver.
Of course, it can be argued that these developments do not improve on the

existing global approximations which have already been constructed and tabulated,
and which we have seen to be quite efficient for the kernels arising in applications
to Maxwell’s equations. However, they can be used to evaluate exact conditions for
spatial discretizations, which may prove more accurate for problems with unresolved
waves of nonnegligible amplitude. This is carried out in detail in [49]. Furthermore,
they may be useful for generalizations to more complex media.

3. Exact formulations on general boundaries

Despite the existence of fast, low-storage evaluation algorithms, the fact that the
boundary conditions considered so far require the use of a restricted set of artificial
boundaries does lead to nonnegligible costs in some cases. In particular, the need
to embed a high-aspect-ratio scatterer in a spherical computational domain may
drastically increase the computational requirements. Therefore one would like to
construct accurate radiation conditions on more general boundaries, and we will
discuss such procedures for the remainder of the article.

3.1. Kirchhoff representations. Rather early on Ting and Miksis [70] proposed
a scheme for implementing exact boundary conditions for the time–dependent scalar
wave equation. They considered a scenario as in Figure 1, with the computational
domain extended spatially and taken to lie within another artificial boundary Γ′.
Provided that the initial data, u(·, 0) and ut(·, 0), lies within Γ (and further that
any inhomogeneities are confined both spatially and temporally to the region of Ω
within Γ), then field values on Γ′ have a retarded Kirchhoff representation,[9]

u(x′, t) = − 1

4π

∫

Γ

[

u(x, t− r/c)
∂

∂n

(

1

r

)

− 1

r

∂u

∂n
(x, t− r/c) − 1

rc

∂r

∂n

∂u

∂t
(x, t− r/c)

]

dSx, x′ ∈ Γ′(3.78)
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where dSx is the area measure and n is the inward–pointing normal on Γ (that is
outward–pointing with respect to the tail Ξ). Givoli and Kohen [25] numerically
implemented this scheme for both the scalar wave equation in three space dimen-
sions and for the equations of elasticity. He and Weston [42] developed a fully
vector version of the scheme as applied to the Maxwell equations.

Γ
Γ

ΞΩ

Figure 1. Domains for an exterior problem. Ξ is the tail,
Ω is the computational domain, and both Γ and Γ′ are artificial
boundaries. The irregular objects within Ω represent scatterers.

Teng [68] demonstrated that one can do away with the need for two artificial
boundaries, in effect considering the limit when Γ and Γ′ are the same surface. For
a generic point x′ ∈ Γ, he finds that

u(x′, t)

(

1 − Θ(x′)

4π

)

= − 1

4π

∫

Γ

[

u(x, t− r/c)
∂

∂n

(

1

r

)

− 1

r

∂u

∂n
(x, t− r/c) − 1

rc

∂r

∂n

∂u

∂t
(x, t− r/c)

]

dSx, x′ ∈ Γ,(3.79)

where Θ(x′) is the exterior solid angle as measure in the tangent space at x′.
Provided that the artificial boundary is smooth at x′, his formula reduces to

u(x′, t) = − 1

2π

∫

Γ

[

u(x, t− r/c)
∂

∂n

(

1

r

)

− 1

r

∂u

∂n
(x, t− r/c) − 1

rc

∂r

∂n

∂u

∂t
(x, t− r/c)

]

dSx, x′ ∈ Γ.(3.80)

This boundary condition is clearly nonlocal in space and time; however, its history
dependence is restricted in the following sense. The integral involves the retarded
time τ = t− r/c which may be confined to the interval t− rmax/c ≤ τ ≤ t, where
rmax is the maximum Euclidean distance between any two points on Γ.

3.2. Origin of simple of history terms. Teng’s derivation of (3.79) relies on the
theory of distributions. Although we shall not repeat his argument, let us show how
such history–dependent terms arise in a restricted setting, that is the homogeneous
scalar wave equation for c = 1 and a simple class of infinite–extent boundaries,
such as an infinite plane, two semi–infinite planes which meet at an edge, or three
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quarter–infinite planes which meet at a corner. We will derive a formula for u(x′, T )
at time T , with the spatial point x′ = (0, 0, 0) taken as the coordinate origin and
assumed common to all the planes which make up the boundary Γ. Let B(r, t)
represent the radius–r sphere at time t and centered at the origin. With this
notation we write B(T − t, t) for the intersection of time level t < T and the
past lightcone of the spacetime point (0, 0, 0, T ). The artificial boundary Γ divides
B(T − t, t) into two components, each one a spherical polygon, that is a spherical
portion enclosed by the arcs of great circles.

For the scenario just described we will prove a lemma, and then use the lemma
to produce our formula for u(0, 0, 0, T ) in the case when Γ is a single plane. Let S∗

be the angular parameter space specifying a spherical polygon on the unit sphere,
and let B∗(r, t) ⊂ B(r, t) be the corresponding spherical polygon within the sphere
B(r, t). The boundary ∂B∗(r, t) of B∗(r, t) is a closed, continuous, and piecewise
smooth curve γ(r, t), and it may in fact be a single great circle. In any case, express-
ing the boundary γ(r, t) as a union ∪iγi(r, t) of smooth curves, we use dσi = rdφi
to represent the induced Riemannian measure (differential of arc–length) on the
component γi(r, t), where φi is an angular coordinate along the component. Fur-
thermore,1 ∂/∂x

i will represent the Cartesian direction which coincides on γi(r, t)
with the circle’s outward–pointing normal as a component of ∂B∗(r, t). Along
γi(r, t) the vector field ∂/∂x

i points perpendicularly to γi(r, t) and also tangent
to B(r, t). Globally, ∂/∂x

i is merely the normal vector field for some foliation of
R

3 into R
2 planes. Let M represent the solid past null cone (or conoid) of the

spacetime point (0, 0, 0, T ). For a generic time t < T , let Mt represent the closed
portion of M lying to the future of time level t.
Lemma: Suppose u is a classical solution to the wave equation on a neighborhood
of Mt. Then, with Φ the solid angle subtended by B∗(r, t), we have2

Φu(0, 0, 0, T ) =
∑

i

∫ T

t

1

T − τ

∫

γi(T−τ,τ)

∂u

∂x
i
dσidτ

(T − t)
〈

ut
〉

B∗(T−t,t)
+ ∂T (T − t)

〈

u
〉

B∗(T−t,t)
.(3.81)

The result can be shifted to a generic spatial point x by translation invariance.
To prove the lemma, we first note that the equation holds in the t → T− limit.

Indeed, in each integral over γi(T − τ, τ) the apparently singular (T − τ)−1 is
canceled by a (T − τ) in the dσi measure. Therefore, to gather the result, we must
simply establish that the right–hand side of (3.81) is constant in t. With that aim,

1We use the san serif x to indicate that the ∂/∂x
i direction need not be one of the fixed

Cartesian basis directions: ∂/∂x, ∂/∂y, ∂/∂z.
2For w = w(x, y, z, t) we introduce the following convention for (unnormalized) angular aver-

ages:

˙

w
¸

B∗(r,t)
=

Z

S∗

w(r sin θ cos φ, r sin θ sinφ, r cos θ, t)dS,

where B∗(r, t) is the radius–r spherical portion centered at the origin for which (θ, φ) ∈ S∗. This
average does not use the proper area measure r2dS on B∗(r, t), where dS = sin θdθdφ is the proper
area measure on the unit–sphere. By choosing not to incorporate the proper area measure in the
definition of the average, we ensure that r → 0+ limits are readily taken.
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we consider the following key identity:

(T − t)−1∆S2u
(

(T − t)ν, t
)

=

∂

∂t

{

(T − t)ut
(

(T − t)ν, t
)

+
∂

∂T

[

(T − t)u
(

(T − t)ν, t
)

]

}

,(3.82)

where ∆S2 is the S2 Laplacian and ν = (sin θ cosφ, sin θ sinφ, cos θ) a set of di-
rection cosines. This identity is nothing more than the wave equation itself, here
expressed in spherical polar coordinates. Indeed, note that the left–hand side of
(3.82) is symbolically

(3.83)

(

∂

∂t
− ∂

∂R

)

R(ut + uR + u/R) = R(utt − uRR − 2uR/R).

Since the angular parameter space S∗ does not depend on time, we may integrate
(3.82), thereby obtaining

(T − t)−1

∫

S∗

∆S2u
(

(T − t)ν, t
)

dS =

∂

∂t

∫

S∗

{

(T − t)ut
(

(T − t)ν, t
)

+
∂

∂T

[

(T − t)u
(

(T − t)ν, t
)

]

}

dS,(3.84)

or in our more compact notation,

(3.85) (T−t)−1
〈

∆S2u
〉

B∗(T−t,t)
= ∂t(T−t)

〈

ut
〉

B∗(T−t,t)
+∂t∂T (T−t)

〈

u
〉

B∗(T−t,t)
.

By Stokes’ Theorem, the term on left–hand side of the equation integrates to

(3.86) (T − t)−1
〈

∆S2u
〉

B∗(T−t,t)
=
∑

i

1

T − t

∫

γi(T−t,t)

∂u

∂xi
dσi,

that is precisely minus the time derivative of the first term on the right–hand side
of (3.81). Whence the right–hand side of (3.81) is indeed constant in t. �

When B∗(T − t, t) is the entire sphere B(T − t, t), the lemma yields the standard
spherical means formula

u(0, 0, 0, T ) =

(T − t)

4π

∫

S2

ut
(

(T − t)ν, t
)

dS +
∂

∂T

[

(T − t)

4π

∫

S2

u
(

(T − t)ν, t
)

dS

]

.(3.87)

We see, in some sense, that the spherical means formula holds because the “bound-
ary of a boundary is zero” [51]. See [67] for another derivation of (3.87). We remark
that the lemma above can also be established via a generalization of Hadamard’s
method for deriving the spherical means formula [33, 18].

When γ(T−t, t) is the equatorial great circle lying in the plane z = 0, the lemma
yields a hemispherical means formula,

u(0, 0, 0, T ) =

− 1

2π

∫ T

t

∫ 2π

0

uz((T − τ) cosφ, (T − τ) sin φ, 0, τ)dφdτ

+
(T − t)

2π

∫

S+

ut
(

(T − t)ν, t
)

dS +
∂

∂T

[

(T − t)

2π

∫

S+

u
(

(T − t)ν, t
)

dS

]

,(3.88)

with S+ = {(θ, φ) : 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π} representing the angular parameter
space specifying the northern hemisphere. If we take t = 0 as the initial time and
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further assume that the initial data vanishes for z > 0 (or just on a neighborhood
of B+(T, 0)), then the last formula becomes

(3.89) u(0, 0, 0, T ) = − 1

2π

∫ T

0

∫ 2π

0

uz((T − τ) cosφ, (T − τ) sinφ, 0, τ)dφdτ.

A similar formula will always follow from the lemma, provided that the initial data
is appropriately chosen. Since the z–derivative uz of the solution also obeys the
wave equation, the last equation holds with u replaced by uz (again subject to our
assumption about initial data). Under the integral sign, one can then exploit the
wave equation in cylindrical coordinates to derive the plane boundary condition
described in [35] as expressed in terms of the nonlocal operator in (2.20), although
now for the plane z = 0 rather than x = 0.

3.3. Fast evaluation of the retarded potential: the multilevel plane wave

fast time domain algorithm. The geometrical flexibility of the retarded poten-
tial formulations of exact boundary conditions is obviously attractive. In particular,
unlike the formulations we have presented on symmetric boundaries, they allow one
to use a computational domain of minimal size. Let us then consider the direct dis-
cretization of (3.78), as in [25], or of Teng’s single-boundary reformulation (3.79)
or (3.80). For each point on the boundary we must compute an integral over the
boundary of data extending into the past. By our scaling assumptions this is an
O(1) time history independent of T . Thus the total cost of a direct algorithm is:

(3.90) Work ∝ λ−5T, Storage ∝ λ−3.

Thus, although the storage costs are comparable to those required by the volume
solver, the work requirements are excessive. These follow from the dense matrix
multiplication inherent in the discretization of the integrals. The analogous problem
arises in the solution of frequency-domain integral equations of scattering theory.
For the frequency-domain problem there has been an intense interest in the inven-
tion of fast algorithms to compute these dense-matrix multiplications. Important
examples include the frequency-domain fast multipole algorithm (see [17] and ref-
erences therein for the mathematical description and [15] for the description of a
large-scale electromagnetic scattering code which uses it) and the equivalent source
method (see [12] and references therein). It is natural to attempt to apply these
methods in the time domain, essentially by inverting the Fourier transform. The
time-domain version of the fast-multipole method is currently the best developed
algorithm of this type and so we will outline it below. Equivalent source methods
are discussed in the next section.

An algorithm for evaluating the retarded potential based on fast-multipole in-
spired ideas is the multilevel plane-wave fast time domain algorithm (PWFTD) of
Michielssen et al [23, 62]. The details of its implementation are somewhat com-
plex, so we will content ourselves with an overview, referring the reader to the
original papers for more details. The fundamental ingredient in this algorithm is
the efficient evaluation of space-time localized pieces of the retarded potential in-
tegral. Consider the restriction of the retarded potential integral to a small region
of space-time, S × (ts, tf ):

(3.91)

∫

S

[

u(x, t− r/c)
∂

∂n

(

1

r

)

− 1

r

∂u

∂n
(x, t− r/c) − 1

rc

∂r

∂n

∂u

∂t
(x, t− r/c)

]

dSx,
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where r = |x− x′| is the distance to the target point, x′. Clearly, this contribution
is nonzero only in the time interval (Ts, Tf ) with:

(3.92) Ts = ts + min
x∈S

r/c, Tf = tf + max
x∈S

r/c.

This remarkable property of solutions of the wave equation and Maxwell’s equations
in three space dimensions is referred to as the strong Huygens’ prinicple or the
presence of lacunae.

The basis of the PWFTD is the representation of (3.91) using propagating plane
waves.3 The mathematical basis for the time-domain plane wave representations
is found in the work of Heyman [44]. He points out the fundamental fact that
propagating plane wave representations are not causal; as soon as a plane wave is
“turned on” the signal is felt at points arbitrarily remote from S. Thus the true
signal requires in addition evanescent modes which precisely cancel these noncausal
signals. However, a remarkable result of [44] is that, for the compactly supported
signals considered here, regions of space-time can be identified where only the prop-
agating waves are needed. The PWFTD algorithm employs only propagating plane
waves to evaluate (3.91) at remote locations where Heyman’s analysis shows they
are sufficient. The outline of the basic two-level algorithm is then as follows:

i: Expand the local signal into a discrete set of plane waves with directions
appropriately sampled on the unit sphere.

ii: Translate the planes waves to remote locations, F .
iii: Evaluate the plane waves at remote nodes within F .

This basic process is then embedded in a multilevel framework. The final result is
an algorithm requiring:

(3.93) WorkPWFTD ∝ λ−3T ln
1

ε
· ln 1

λ
,

which is formally negligible in comparison with the volume solver. However, it seems
that the constants are larger than for the other fast methods we have discussed.

4. Methods Based on Equivalent Sources

Our final example of exact, nonlocal conditions is based on the fact that solu-
tions to Maxwell’s equations in the neighborhood of our artificial boundary can be
represented as the solution of the forced Maxwell system in free space, with sources
distributed in the region between any scatterers or other inhomogeneities and the
artificial boundary. (For example, distributed near the inner surface Γ in Figure
1.) An algorithm then follows from:

i: Finding the sources;
ii: Efficiently evaluating the source solution at the boundary, making use of

the strong Huygen’s principle (the existence of lacunae).

We remark that the retarded potential equation, particularly in the separated
boundary form used in [25, 42], can be viewed as a special case. The algorithms
discussed here will exploit the possibility of more flexible representations to derive
efficient algorithms.

3A curious fact about the algorithms mentioned here is that they employ plane wave rather
than multipole solution representations to achieve efficiency, but retain the word multipole in their
nomenclature for historical reasons.
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The most well-developed equivalent source method to date was proposed by
Ryaben’kii et al [58], and applied to Maxwell’s equations by Tsynkov in [71]. We
first consider their construction of the sources. Define a cutoff function, µ(x, t),
which equals one near and beyond the artificial boundary and zero in the region
containing inhomogeneities; µ is nonconstant only in a transition region which ulti-
mately will contain the sources. In applications to the scalar wave equation one can
simply define auxiliary fields by multiplying the physical fields by µ. For applica-
tions to Maxwell’s equations this direct approach is problematic as the subsequent
time-decomposed sources fail to satisfy the continuity relations. Therefore, a some-
what more involved construction is advocated in [71] which we will only outline

here. It entails the construction of fields W̃ and Ṽ satisfying:

(4.94) ∇×∇× W̃ = B, ∇×∇× Ṽ = E,

for x at and beyond Γ′. Then set:

(4.95) B̃ = ∇×∇× (µ̃W̃ ), Ẽ = ∇×∇× (µ̃Ṽ ).

By the simple application of the product rule these fields satisfy the free space
Maxwell system:

∂Ẽ

∂t
− c∇× B̃ = −4πj̃,(4.96)

∂B̃

∂t
+ c∇× Ẽ = −4πj̃m,(4.97)

as well as

(4.98) ∇ · Ẽ = ∇ · B̃ = 0,

(4.99) ∇ · j̃ = ∇ · j̃m = 0.

where the artificial currents are defined via the derivatives of µ and thus are nonzero
only in the transition region. The purpose of the indirect construction of Ẽ and B̃
is to guarantee (4.98)-(4.99). In [71] it is shown that W̃ and Ṽ may be determined
only from the knowledge of the solution on Γ′, but their actual construction is only
described in a special case. Thus at present the optimization of this aspect of the
algorithm is an open issue, and alternative methods are being studied [72]. We
emphasize that for the scalar wave equation there is no issue here as the auxiliary
fields can be defined simply through multiplication by µ. Of course practical ap-
plications of the method require specific choices for the cutoff function; refer to the
original papers [58, 71] for specific examples.

We now address the second problem, namely the efficient evaluation of the auxil-
iary fields Ẽ and B̃ at the artificial boundary Γ′. Recalling that these fields coincide
with E and B on Γ′ they can be used to provide exact boundary data of any conve-
nient type. Here a memory-efficient algorithm is based on the presence of lacunae.
Consider a current source supported in the interval (ts, tf ). By the volume Kirch-
hoff integral we have, following the same reasoning as in the preceding section, that
the solution is nonzero at Γ′ only in the time interval ∪x′(τs, τf ) given by (3.92)
where x′ varies over Γ′. The details of turning this fact into an efficient algorithm
are described in [59]. A sufficiently smooth partition of unity in time is introduced
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to express the sources as a sum of terms with compact time support:

(4.100) j̃ =
∑

k

j̃k, j̃m =
∑

k

j̃k,m,

with the kth term supported in (ts,k , tf,k). Define Ẽk, B̃k to be the solution of
(4.96)-(4.97) driven by the kth source. (Note that (4.99) is preserved by the time
partition.) It can be solved on the finite time interval (τs,k, τf,k), on an enlarged
domain with simple boundary conditions. In [58] periodic boundary conditions are
recommended. Use of these enable the use of Fourier spectral discretizations which
may be quite efficient.

Clearly, the computational complexity of this algorithm, at least for the scalar
wave equation where construction of W̃ and Ṽ are unnecessary, will be of the same
order as the interior solver, (2.54). As such it may not be as efficient as some of
the more elaborate constructions discussed earlier. However, again at least when
applied to the scalar wave equation, it is by far the simplest exact method to
implement.

More recently, Bruno and Hoch [13] have developed an alternative equivalent
source algorithm for the scalar wave equation which has the potential for greater
efficiency. It is essentially a time-domain version of Bruno and coworkers fast
algorithm for frequency domain scattering (e.g. [12] and references therein). Its
essential feature in comparison with the method described above is the use of simple
sources (monopoles and dipoles) on a sparse, regular grid. It is the sparsity of the
source distribution combined with the use of FFTs which leads to the potential
savings. The computation of the source strengths follows from the least squares
approximation to the solution data near the boundary.

5. Local approximations

Lastly we discuss what are undobtedtly the most often used techniques; the
perfectly matched layer (PML) and local radiation boundary conditions. These
methods provide geometric flexibility and greater potential for generalizations to
inhomogeneous or even nonlinear systems. The PML in particular is extremely
simple to implement. Although these methods are not directly based on exact
formulations, they are convergent, albeit often nonuniformly in time. As such
they are a viable alternative to the methods we have discussed, particularly if the
accuracy requirements are not too stringent and the solution time, T , is not too
large.

We begin with a discussion of the details of these two approaches, as well as an
interesting alternative formulation which in some sense unifies them. We will then
discuss their convergence properties and compare their complexity to the algorithms
implementing nonlocal formulations.

5.1. The perfectly matched layer. The perfectly matched layer, introduced for
Maxwell’s equations by Bérenger [8], is an absorbing layer with a reflectionless inter-
face with the computational domain. Bérenger’s original formulation had the defect
of being only weakly well-posed, and his construction was somewhat unintuitive.
Subsequently, a clearer understanding of PML as a complex coordinate stretch-
ing emerged [16]. Mathematically, the clearest formulation of PMLs for Maxwell’s
equations has been given by Petropoulos [54], which we follow here. For simplicity
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we display his model for a Cartesian layer in the x coordinate direction. In [54]
spherical and cylindrical layers are also developed.

The layer equations are most easily discussed in the frequency domain, where
we will use Laplace rather than Fourier transformations. We assume the layer is
located in x ∈ (0, L). The equations then follow from the complex coordinate
stretching:

(5.101) x̃ =

∫ x

0

η

(

1 +
σ(p)

s+ α

)

dp,

where s is the dual variable to time. Maxwell’s equations then become:

sÊ − c∇̃ × B̂ =0,(5.102)

sB̂ + c∇̃ × Ê =0,(5.103)

where ∇̃× is obtained by replacing the x derivatives in ∇× by:

(5.104)
1

η

s+ α

s+ α+ σ(x)

∂

∂x
.

Time-domain realizations of these equations are obtained by viewing the trans-
formed system as an anisotropic dielectric material. The layer equations then are:

∂D

∂t
− c∇×H =0,(5.105)

∂B

∂t
+ c∇×E =0,(5.106)

with the constitutive relations:

(5.107)
∂Ex
∂t

+ αEx = η

(

∂Dx

∂t
+ (α+ σ)Dx

)

,

(5.108) η

(

∂Etan

∂t
+ (α+ σ)Etan

)

=
∂Dtan

∂t
+ αDtan,

(5.109)
∂Hx

∂t
+ αHx = η

(

∂Bx
∂t

+ (α+ σ)Bx

)

,

(5.110) η

(

∂Htan

∂t
+ (α+ σ)Htan

)

=
∂Btan

∂t
+ αBtan.

Thus to implement the PML one only needs to solve an additional set of ordinary
differential equations. Of course one must also choose the parameters. The stretch-
ing parameter, η ≥ 1, is often omitted; that is one takes η = 1. The parameter
α ≥ 0 is called the complex frequency shift. Often it is set to zero, but choosing
it nonzero yields enhanced long-time stability [7]. The function σ(x) ≥ 0 is the

absorption parameter. The error estimates described later show that η
∫ L

0 σ(p)dp
controls the error. Typically σ = σ0x

q is used with q chosen so that the fields have
sufficient differentiability properties to allow differencing across the layer interface.
However, if very high order methods are used this may be a restriction. An alterna-
tive is to develop multidomain formulations with characteristic matching across the
interface. Then one can choose σ to be constant, or to vanish only to first order.
See, for example, [22].
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Geometric flexibility arises from the implementation of the PML in domains
bounded by planar faces. Then, in addition to the single-variable layer discussed
above, corner layers are required. These are derived by applying the coordinate
stretching in all three variables. See the appendix of [54].

Concerning the mathematical properties of the layers, strong well-posedness and
stability can be established [54, 4, 6]. We note that in [4] more general PML
formulations are derived based on a different viewpoint. These generalizations are
necessary for the treatment of anisotropic materials.

5.2. Convergent local boundary condition sequences. Finally we reconsider
the oldest class of domain truncation methods, local radiation boundary condi-
tion sequences. For the scalar wave equation such sequences were formulated two
decades ago by Higdon [45, 46]. They have been revitalized by a number of new
developments which we will discuss below. These are:

i: Development of new auxiliary variable formulations allowing straightfor-
ward implementations to arbitrary order;

ii: Construction of corner compatibility conditions connecting auxiliary vari-
ables at adjacent faces enabling implementations in polygonal domains;

iii: Adaptive determination of boundary condition order;
iv: Proofs of spectral convergence with increasing order.

Our description below will follow [39]. We note that parallel developments for
the scalar wave equation are reported in [40, 24, 37].

Consider a planar artificial boundary, x = 0. Our starting point is a representa-
tion of the solution as a superposition of propagating and evanescent plane waves,
derived under the assumption that all inhomogeneities lie in the left half plane
x ≤ −δ for some δ > 0.

u(x, y, z, t) =

∫ π
2

0

Φ (ct− x cos θ, y, z, θ) dθ

+

∫ ∞

0

e−σxΥ(y, z, t, σ)dσ,(5.111)

where u is any Cartesian field component. Following the treatment of analogous
expressions in deriving the translation formulas for the fast multipole method [26],
approximate (5.111) by some quadrature rule:

(5.112) u(x, y, z, t) ≈
np−1
∑

j=0

wjΦj(ct− x cos θj , y, z) +

ne
∑

j=1

dje
−σjxΥj(t, y, z).

Local boundary conditions with np+ne auxiliary functions can now be constructed
which are exact on this approximate representation independent of the unknown
functions Φj and Υj . Recursively define for j = 0, . . . , np − 1, again for each
Cartesian component:

(5.113)

(

cos θj
∂

∂t
+ c

∂

∂x

)

ψj =

(

cos θj
∂

∂t
− c

∂

∂x

)

ψj+1

with ψ0 = u and for j = 1, . . . , ne:

(5.114)

(

σj +
∂

∂x

)

ψnp+j−1 =

(

σj −
∂

∂x

)

ψnp+j

(5.115) ψnp+ne = 0.
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Upon proving by induction that each of these auxiliary fields satisfies Maxwell’s
equations, one derives evolution equations along the boundary x = 0. Define the
normal characteristic variables:

(5.116) Rj = E2,j +B3,j , Vj = E2,j −B3,j ,

(5.117) Sj = E3,j −B2,j , Wj = E3,j +B2,j .

We then have for j = 0, . . . , np − 1:

(1 + cos θj)
∂Rj+1

∂t
+ (1 − cos θj)

∂Rj
∂t

=

c

(

∂B1,j

∂z
+
∂B1,j+1

∂z
+
∂E1,j

∂y
+
∂E1,j+1

∂y

)

,(5.118)

(1 + cos θj)
∂Sj+1

∂t
+ (1 − cos θj)

∂Sj
∂t

=

−c
(

∂B1,j

∂y
+
∂B1,j+1

∂y
− ∂E1,j

∂z
− ∂E1,j+1

∂z

)

,(5.119)

(1 + cos θj)
∂Vj
∂t

+ (1 − cos θj)
∂Vj+1

∂t
=

c

(

∂B1,j

∂z
+
∂B1,j+1

∂z
− ∂E1,j

∂y
− ∂E1,j+1

∂y

)

,(5.120)

(1 + cos θj)
∂Wj

∂t
+ (1 − cos θj)

∂Wj+1

∂t
=

−c
(

∂B1,j

∂y
+
∂B1,j+1

∂y
+
∂E1,j

∂z
+
∂E1,j+1

∂z

)

,(5.121)

and for j = 1, . . . , ne:

∂Rnp+j

∂t
+
∂Rnp+j−1

∂t
− cσj(Rnp+j−1 −Rnp+j) =

c

(

∂B1,j

∂z
+
∂B1,np+j

∂z
+
∂E1,np+j−1

∂y
+
∂E1,np+j

∂y

)

,(5.122)

∂Snp+j

∂t
+
∂Snp+j−1

∂t
− cσj(Snp+j−1 − Snp+j) =

−c
(

∂B1,np+j−1

∂y
+
∂B1,np+j

∂y
− ∂E1,np+j−1

∂z
− ∂E1,np+j

∂z

)

,(5.123)

∂Vnp+j−1

∂t
+
∂Vnp+j

∂t
+ cσj(Vnp+j−1 − Vnp+j) =

c

(

∂B1,np+j−1

∂z
+
∂B1,np+j

∂z
− ∂E1,np+j−1

∂y
− ∂E1,np+j

∂y

)

,(5.124)

∂Wnp+j−1

∂t
+
∂Wnp+j

∂t
+ cσj(Wnp+j−1 −Wnp+j) =

−c
(

∂B1,np+j−1

∂y
+
∂B1,np+j

∂y
+
∂E1,np+j−1

∂z
+
∂E1,np+j

∂z

)

.(5.125)
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In addition for all j:

(5.126)
∂B1,j

∂t
= c

(

∂E2,j

∂z
− ∂E3,j

∂y

)

,

(5.127)
∂E1,j

∂t
= c

(

∂B3,j

∂y
− ∂B2,j

∂z

)

.

We see that the structure of the recursions corresponds to the directions of the
characteristics. For the outgoing characteristics, Rj and Sj , one can solve for the
time derivatives with increasing j, naturally starting with the time derivatives of
R0 and S0 which can be computed from the interior. The normal fields satisfy
equations which are uncoupled in j and which thus can be solved individually. For
the incoming characteristics, Vj and Wj , on the other hand, one can solve with
decreasing j. We then determine the boundary condition by setting:

(5.128) Vnp+ne = Wnp+ne = 0.

The combination (5.118)-(5.128) thus provides a recipe for computing the time
derivatives of the incoming characteristic variables given the time derivatives of the
outgoing variables. Comparing with (2.12)-(2.13) and supposing (as we always have
in our numerical experiments) that θ0 = 0 we see that the nonlocal terms, RV0 and
RW0, are approximated by:

(5.129) RV0 ≈ ∂E1,1

∂y
− ∂B1,1

∂z
,

(5.130) RW0 ≈ ∂E1,1

∂z
+
∂B1,1

∂y
.

Despite the lengthy description, the implementation of these conditions is straight-
forward. In fact (5.118)-(5.127) is simply a hyperbolic system on the boundary
which can be discretized using whatever scheme is used in the interior. In [39]
arbitrary-order implementations using a high-order discontinuous Galerkin method
are demonstrated.

To use these conditions on polygonal domains, corner and edge compatibility
conditions must be derived to provide boundary conditions for the auxiliary hyper-
bolic systems. This is accomplished in [39] in two space dimensions for sequences
with ne = 0. The construction there is somewhat ad hoc; it depends on formally in-
troducing doubly indexed auxiliary variables satsfying the recursions on both faces,
writing down the large system of equations which govern them, and algebraically
eliminating all space derivatives. Experiments show that this procedure is stable
and accurate up to very high order (over 100). However, it is not yet justified
mathematically, and a simpler approach would be desirable.

5.3. Implementations via optimal grids: a link between PML and local

boundary condition sequences. Lastly we mention an interesting connection
between PMLs and high-order local boundary condition sequences for the scalar
wave equation developed by Asvadurov et al. [5] and used later in [32]. The
essential idea is to study the effective discrete Dirichlet-to-Neumann maps produced
by discretization of the layer equations. One then realizes that for a fixed finite
difference or finite element discretization, one can use the complete freedom of
mesh location, including the possibility of choosing a complex mesh, to control the
properties of this map. If the grid is chosen to agree with the complex grid stretching
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of a PML, then, of course, a discretization of that PML is produced. However,
other choices are shown to correspond to approximations akin to those presented
above. In [5] a particular set of θj ’s is produced corresponding to optimal rational
approximations under the assumption of certain distributions of propagating waves.
In [32] a simpler, nonstaggered, grid is considered.

We will show how the ideas presented in [32] apply to the recursive formulation
(5.113)-(5.115). Applying a Laplace transform in time, the basic idea is the recog-
nition that if we treat the indices in these equations as discrete x node indices then
the transformed recursion equations can be rearranged so that they take the form:

(5.131)
ψ̂j+1 − ψ̂j
(

2c
s cos θj

) =
1

2

(

∂ψ̂j+1

∂x
+
∂ψ̂j
∂x

)

,

(5.132)
ψ̂j+1 − ψ̂j
(

2
σj

) =
1

2

(

∂ψ̂j+1

∂x
+
∂ψ̂j
∂x

)

.

Thus they are formally equivalent to a discretization (via the box scheme) of the

identity
∂ψ̂j

∂x =
∂ψ̂j

∂x with grid spacings
(

2c
s cos θj

)

and
(

2
σj

)

. This establishes a

connection with PML under this particular discretization as one would simply use
different, s-dependent grid spacings.

Guddati and Lim [32] go on to use this formal relationship to very simply derive
corner compatibility conditions; one simply proceeds as with PML and solves using
the tensor-product mapped grid. Clearly, much needs to be done to establish the
mathematical validity of this rather formalistic construction. It does, nonetheless,
raise interesting issues concerning the relationship of these two local approaches
after discretization.

5.4. Accuracy of the local approximations. A direct approach to assessing
the accuracy of the local approximations is to return to the Laplace domain and
compute the reflection coefficient. We assume, as in the derivation of (5.111),
that all inhomogeneities are located to the left of x = −δ and that the artificial
boundary is the plane x = 0. Estimating the error in terms of the reflection
coefficient is a straightforward application of Parseval’s relation; see [35, 36, 39] for
details. Precisely, for fixed tangential wave numbers k they are given in terms of:

(5.133) max
<s=T−1

|R(s, k)|.

For the PML reflection coefficients are computed in many places, though often
only displayed in the propagating mode regime. Here we take η = 1, suppose a layer
of width L terminated by normal characteristic boundary conditions, and define:

(5.134) σ̄ = L−1

∫ L

0

σ(τ)dτ.

After some straightforward algebra we find:

(5.135) RPML =

(

(s̃2 + |k|2)1/2 − s̃

(s̃2 + |k|2)1/2 + s̃

)

e−2L(s̃2+|k|2)1/2(1+ σ̄
s̃+α).
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Similarly, one can compute the reflection coefficient for the local boundary con-
dition sequences [39]:

(5.136) RBC = κ2
P · κ2

E ·
(

(s̃2 + |k|2)1/2 − s̃

(s̃2 + |k|2)1/2 + s̃

)

,

where

(5.137) κP =





np−1
∏

j=0

cos θj s̃− (s̃2 + |k|2)1/2
cos θj s̃+ (s̃2 + |k|2)1/2



 ,

(5.138) κE =





ne
∏

j=1

σj

c − (s̃2 + |k|2)1/2
σj

c + (s̃2 + |k|2)1/2



 .

We first note that the restriction to finite times is necessary; if we take s̃ imag-
inary the maximum reflection coefficients are one. This difficulty exists even for
the nonlocal conditions on planar and cylindrical boundaries and is responsible for
the lnT terms in the complexity estimates. Then for fixed T and assuming a ban-
dlimited signal, |k| ≤ λ−1, it is clear that both methods converge. In particular
RPML → 0 as Lσ̄ → ∞ since:

(5.139) min
<s=T−1

<
(

(s̃2 + |k|2)1/2
s̃+ α

)

> 0.

Similarly, RBC → 0 as np → ∞ as each term in the definition of κP is strictly
smaller than one.

Rather than attempting to build analytic error estimates out of these expressions
we will simply compute parameter values needed to meet various tolerances. We
consider three cases: T = 10, λ = 10−1; T = 20, λ = 2 × 10−2; and T = 100,
λ = 10−2. In the case of the PML we set α = 0.1, σ̄ = 1, and only vary L. In the
plots we assume that the number of points in the layer is proportional to λ−1L. In
practice one can decrease the resolution within the layer so that we are somewhat
overpredicting the number of points required, but we won’t attempt to quantify
this effect.

For the boundary conditions we consider two choices.
Padé Parameters:

(5.140) cos θj = 1, j = 0, . . . , np − 1, ne = 0,

Gauss-Radau-Rokhlin-Yarvin (GRRY) Parameters:

(5.141) θj =
π(cj + 1)

4
, j = 0, . . . , np − 1,

where cj are the left endpoint Gauss-Radau nodes on [−1, 1] and

(5.142) σj = βλdj , j = 0, . . . , ne,

where dj are the Yarvin-Rokhlin nodes [75]. (The Yarvin-Rokhlin nodes are tabu-
lated in the f77 subroutine wts500.f available at www.netlib.org/pdes/multipole/.)
For the experiments we chose np = ne and β = 5.

In Figure 2 we plot the maximum of the reflection coefficient as a function of the
degrees of freedom in the boundary treatment (terms in the boundary condition or
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points in the layer). These can be approximately fit with the following exponential
convergence models:

errPML ∝ exp

(

−1.3

√

λ

cT
nl

)

,

errPade ∝ exp

(

−2.0

(

λ

cT

)

np

)

,(5.143)

errGRRY ∝ exp

(

−0.29
(np + ne)

ln
(

cT
λ

)

)

.

Comparitive numerical experiments are presented in [39]. There we see that the
actual errors are typically an order of magnitude or two smaller than predicted by
the maximum reflection coefficient. We also show that the PML results can be
improved on by coarsening the the layer resolution. Nonetheless, the results do
follow the trends predicted by this analysis; the long-time error is worse for the
traditional local Padé boundary conditions, using the PML results in significant
improvements, and use of the GRRY parameters leads to significant improvements
still.

Accepting the estimates in (5.143) we can finally estimate the complexity of the
local boundary treatments:

WorkPML ∝ λ−
7
2T

3
2 ln

1

ε
, StoragePML ∝ λ−

5
2 T

1
2 ln 1

ε

WorkPade ∝ λ−4T 2 ln
1

ε
, StoragePade ∝ λ−3T ln 1

ε(5.144)

WorkGRRY ∝ λ−3T ln
1

ε
· ln (λ−1T ), StorageGRRY ∝ λ−2 ln 1

ε · ln (λ−1T ).

We see that the PML approach is acceptable except for T very large. The use of
traditional local boundary conditions is only acceptable for T = O(1). The new
local boundary conditions, on the other hand, yield complexity estimates compa-
rable to the nonlocal boundary conditions. Thus if it would be possible to extend
the construction of corner compatibility conditions to this case it seems they would
provide a fairly complete solution. However, at present the corner compatibility
conditions have only been constructed for the case ne = 0.

Lastly we note that exact reflection formulas have recently been derived by Diaz
and Joly [20, 21] and de Hoop et al [19]. They study the scalar wave equation and
use the Cagniard-de Hoop method. This somewhat restricts the parametrizations
they can study. In particular only the cases ne = 0 for boundary condition se-
quences and α = 0 for PML are treated. In these cases the results are in agreement
with those stated above.

Our numerical experiments for time-dependent problems in waveguides confirm
the T -dependence in the complexity estimates above. However, for spherical bound-
aries they may be overly pessimistic. A detailed analysis for spherical PMLs in the
frequency domain has been given by Bao and Wu [10] However, the frequency-
dependence of their estimates precludes their direct application to time-domain
problems. Recently, Chen has completed a time-domain analysis of spherical PMLs
for the scalar wave equation [14], but it is unclear at present if the T -dependence
in his estimates is optimal.
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Figure 2. Maximum reflection coefficients for various local do-
main truncation techniques.
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6. Epilogue: towards the ultimate solution

We have seen that there are now a number of techniques that provide completely
satisfactory solutions to the time-domain radiation boundary condition problem in
electromagnetics for a wide range of situations. At present, none can be called
optimal for all cases considered. Although the nonlocal conditions are extremely
efficient, they lack geometric flexibility. In addition, they have not been generalized
to treat the important case of mutiple media extending to infinity, though it is likely
that some extensions in this direction are possible. Use of the retarded potential in
conjunction with the PWFTD does have favorable complexity estimates, but prac-
tical experience with the algrithm shows that there is substantial computational
overhead. The perfectly matched layer does possess geometric flexibility and ex-
tensibility to more complex models. However, its accuracy can suffer in long time
simulations and the issues associated with optimal numerical implementations are
not easy. Local conditions based on the GRRY nodes show the most promise, but
their implementation in domains with corners, which is necessary if they are to be
made geometrically flexible, has yet to be demonstrated.

We finish by pointing out an interesting mathematical result due to Warchall
[73]. We state it for the scalar wave equation with some simplifying assumptions;
a more general version is proven in [73].

Theorem 1 (Warchall). Let Ω ⊂ R
n be an open convex set. Let f(x, t),u0(x),v0(x)

be sufficiently smooth and compactly supported in Ω′ ⊂ Ω. Finally, let u satisfy

�u = f , u(x, 0) = u0(x),
∂u
∂t (x, 0) = v0(x). Suppose x̄ ∈ ∂Ω and ∆t is such that

c∆t < dist(x̄,Ω′). Then if u(x, t) and ∂u
∂t (x, t) vanish for all x ∈ Ω satisfying

|x− x̄| ≤ c∆t, we may conclude that u(x̄, t+ ∆t) = 0.

The direct interpretation of Warchall’s Theorem is as follows. If we choose a
convex artificial boundary such that the support of the data are located some small
distance away and a time step so that the a priori domain of dependence of boundary
points over a time step doesn’t intersect with the support of the data, then any two
solutions produced by (possibly different) data with the same support which agree
on the restriction of the domain of dependence to the computational domain will
have the same updated values on the boundary.

We would like to translate this local uniqueness result to a formula showing how
to use the data inside Ω to update the solution. If a stable, local, exact update
formula could be found, it would clearly represent the ultimate solution to the
radiation boundary condition problem.
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